--[[
MIT License
Copyright (c) 2019 emmachase
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
]]
local nf = {}
local util = require("modules.regex.util")
nf.epsilon = {type = "epsilon"} -- Special value for epsilon transition
local nameCounter = 0
local function genName()
nameCounter = nameCounter + 1
return "s" .. nameCounter
end
local function emptyMachine(noAccept)
local sName = genName()
local machine = {
states = {
[sName] = {edges = {}}
},
startState = sName,
acceptStates = {[sName] = true}
}
if noAccept then
machine.acceptStates = {}
end
return machine
end
local function addEnter(state, value)
state.enter = state.enter or {}
state.enter[#state.enter + 1] = value
end
function nf.semanticClone(machine)
local cmachine = util.deepClone(machine)
-- Rename all states so there are no collisions
local suffix = genName()
cmachine.startState = cmachine.startState .. suffix
local astates = {}
for k in pairs(cmachine.acceptStates) do
astates[#astates + 1] = k
end
for i = 1, #astates do
local k, v = astates[i], cmachine.acceptStates[astates[i]]
cmachine.acceptStates[k] = nil
cmachine.acceptStates[k .. suffix] = v
end
local states = {}
for k in pairs(cmachine.states) do
states[#states + 1] = k
end
for j = 1, #states do
local k, v = states[j], cmachine.states[states[j]]
for i = 1, #v.edges do
v.edges[i].dest = v.edges[i].dest .. suffix
end
cmachine.states[k] = nil
cmachine.states[k .. suffix] = v
end
return cmachine
end
function nf.concatMachines(first, second)
local newMachine = util.deepClone(first)
for k, v in pairs(second.states) do
newMachine.states[k] = v
end
for k in pairs(first.acceptStates) do
local xs = newMachine.states[k].edges
xs[#xs + 1] = {condition = nf.epsilon, dest = second.startState}
end
newMachine.acceptStates = {}
for k, v in pairs(second.acceptStates) do
newMachine.acceptStates[k] = v
end
return newMachine
end
function nf.unionMachines(first, second)
local newMachine = util.deepClone(first)
for k, v in pairs(second.states) do
newMachine.states[k] = v
end
for k, v in pairs(second.acceptStates) do
newMachine.acceptStates[k] = v
end
-- Link start state
local xs = newMachine.states[newMachine.startState].edges
xs[#xs + 1] = {condition = nf.epsilon, dest = second.startState}
return newMachine
end
function nf.generateFromCapture(atom)
local capture = atom[1]
local machine
if capture.type == "char" then
local sName, cName = genName(), genName()
machine = {
states = {
[sName] = {edges = {{condition = capture.value, dest = cName}}},
[cName] = {edges = {}}
},
startState = sName,
acceptStates = {[cName] = true}
}
elseif capture.type == "any" then
local sName, cName = genName(), genName()
machine = {
states = {
[sName] = {edges = {}},
[cName] = {edges = {}}
},
startState = sName,
acceptStates = {[cName] = true}
}
local sEdges = machine.states[sName].edges
for i = 1, 255 do
sEdges[#sEdges + 1] = {condition = string.char(i), dest = cName}
end
elseif capture.type == "set" or capture.type == "negset" then
local sName, cName = genName(), genName()
machine = {
states = {
[sName] = {edges = {}},
[cName] = {edges = {}}
},
startState = sName,
acceptStates = {[cName] = true}
}
local tState = {}
for i = 1, #capture do
local match = capture[i]
if match.type == "char" then
tState[match.value] = true
elseif match.type == "range" then
local dir = match.finish:byte() - match.start:byte()
dir = dir / math.abs(dir)
for j = match.start:byte(), match.finish:byte(), dir do
tState[string.char(j)] = true
end
end
end
local sEdges = machine.states[sName].edges
if capture.type == "set" then
for k in pairs(tState) do
sEdges[#sEdges + 1] = {condition = k, dest = cName}
end
else
for i = 1, 255 do
if not tState[string.char(i)] then
sEdges[#sEdges + 1] = {condition = string.char(i), dest = cName}
end
end
end
elseif capture.type == "group" then
machine = nf.generateNFA(capture[1])
local instance = genName()
addEnter(machine.states[machine.startState], "begin-group-" .. instance)
for k in pairs(machine.acceptStates) do
addEnter(machine.states[k], "end-group-" .. instance)
end
else
error("Unimplemented capture: '" .. capture.type .. "'")
end
if atom.type == "atom" then
return machine
elseif atom.type == "plus" then
local instance = genName()
addEnter(machine.states[machine.startState], "begin-sort-" .. instance)
for k in pairs(machine.acceptStates) do
local es = machine.states[k].edges
es[#es + 1] = {condition = nf.epsilon, dest = machine.startState}
-- Mark the state for recording, used for path reduction later
addEnter(machine.states[k], "maximize-" .. instance)
end
return machine
elseif atom.type == "ng-plus" then
local instance = genName()
addEnter(machine.states[machine.startState], "begin-sort-" .. instance)
for k in pairs(machine.acceptStates) do
local es = machine.states[k].edges
es[#es + 1] = {condition = nf.epsilon, priority = "low", dest = machine.startState}
-- Mark the state for recording
addEnter(machine.states[k], "minimize-" .. instance)
end
return machine
elseif atom.type == "star" then
local instance = genName()
addEnter(machine.states[machine.startState], "begin-sort-" .. instance)
local needStart = true
for k in pairs(machine.acceptStates) do
local es = machine.states[k].edges
es[#es + 1] = {condition = nf.epsilon, dest = machine.startState}
if k == machine.startState then
needStart = false
end
-- Mark the state for recording
addEnter(machine.states[k], "maximize-" .. instance)
end
if needStart then
machine.acceptStates[machine.startState] = true
end
return machine
elseif atom.type == "ng-star" then
local instance = genName()
addEnter(machine.states[machine.startState], "begin-sort-" .. instance)
local needStart = true
for k in pairs(machine.acceptStates) do
local es = machine.states[k].edges
es[#es + 1] = {condition = nf.epsilon, priority = "low", dest = machine.startState}
if k == machine.startState then
needStart = false
end
-- Mark the state for recording
addEnter(machine.states[k], "minimize-" .. instance)
end
if needStart then
machine.acceptStates[machine.startState] = true
end
return machine
elseif atom.type == "optional" then
machine.acceptStates[machine.startState] = true
return machine
elseif atom.type == "quantifier" then
local quantifier = atom.quantifier
if quantifier.type == "count" then
local single = machine
for _ = 2, quantifier.count do
machine = nf.concatMachines(single, nf.semanticClone(machine))
end
return machine
else -- range
local single = machine
for _ = 2, quantifier.min do
machine = nf.concatMachines(single, nf.semanticClone(machine))
end
if quantifier.max == math.huge then
local prevMachine = nf.semanticClone(machine)
machine = nf.concatMachines(prevMachine, util.deepClone(single))
for k, v in pairs(prevMachine.acceptStates) do
machine.acceptStates[k] = v
end
for k in pairs(machine.acceptStates) do
local es = machine.states[k].edges
es[#es + 1] = {condition = nf.epsilon, dest = single.startState}
end
else
-- All in this range are valid, so setup those links
for _ = quantifier.min + 1, quantifier.max do
local prevMachine = nf.semanticClone(machine)
machine = nf.concatMachines(prevMachine, util.deepClone(single))
for k, v in pairs(prevMachine.acceptStates) do
machine.acceptStates[k] = v
end
end
end
return machine
end
else
error("Unimplemented atom type: '" .. atom.type .. "'")
end
end
function nf.generateNFA(parsedRegex)
local machine = emptyMachine(true)
machine.properties = parsedRegex.properties
for i = 1, #parsedRegex do
-- Different branches
local branch = parsedRegex[i]
local tempMachine = emptyMachine()
for j = 1, #branch do
local capture = branch[j]
tempMachine = nf.concatMachines(tempMachine, nf.generateFromCapture(capture))
end
machine = nf.unionMachines(machine, tempMachine)
end
return machine
end
return nf